Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.012
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38566478

RESUMO

There has been growing interest in the use of human-derived metabolically competent cells for genotoxicity testing. The HepaRG cell line is considered one of the most promising cell models because it is TP53-proficient and retains many characteristics of primary human hepatocytes. In recent years, HepaRG cells, cultured in both a traditional two-dimensional (2D) format and as more advanced in-vivo-like 3D spheroids, have been employed in assays that measure different types of genetic toxicity endpoints, including DNA damage, mutations, and chromosomal damage. This review summarizes published studies that have used HepaRG cells for genotoxicity assessment, including cell model evaluation studies and risk assessment for various compounds. Both 2D and 3D HepaRG models can be adapted to several high-throughput genotoxicity assays, generating a large number of data points that facilitate quantitative benchmark concentration modeling. With further validation, HepaRG cells could serve as a unique, human-based new alternative methodology for in vitro genotoxicity testing.

2.
J Appl Toxicol ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567776

RESUMO

Rubus imperialis Chum. Schl. (Rosaceae) have demonstrated some pharmacological activities, including gastroprotective action. However, genotoxic effects of R. imperialis extract was also reported. Since niga-ichigoside F1 (NIF1) is a major compound of this plant species, and which has proven pharmacological properties, it is essential to investigate whether this compound is responsible for the observed toxicity. Therefore, the objective of this study was to analyze the effects of NIF1 on HepG2/C3A cells for possible cytogenotoxicity, cell cycle and apoptosis influence, and expression of genes linked to the DNA damage, cell cycle, cell death, and xenobiotic metabolism. The results showed no cytogenotoxic effects of NIF1 at concentrations between 0.1 and 20 µg/ml. Flow cytometry also showed no cell cycle or apoptosis disturbance. In the gene expression analysis, none of the seven genes investigated showed altered expression. The data indicate that NIF1 has no cytogenotoxic effects, and no interruption of the cell cycle, or induction of apoptosis, apparently not being responsible for the cytotoxic effects observed in the crude extract of R. imperialis.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38432772

RESUMO

In this report we provide a summary of the presentations and discussion of the latest knowledge regarding the buccal micronucleus (MN) cytome assay. This information was presented at the HUMN workshop held in Malaga, Spain, in connection with the 2023 European, Environmental Mutagenesis and Genomics conference. The presentations covered the most salient topics relevant to the buccal MN cytome assay including (i) the biology of the buccal mucosa, (ii) its application in human studies relating to DNA damage caused by environmental exposure to genotoxins, (iii) the association of buccal MN with cancer and a wide range of reproductive, metabolic, immunological, neurodegenerative and other age-related diseases, (iv) the impact of nutrition and lifestyle on buccal MN cytome assay biomarkers; (v) its potential for application to studies of DNA damage in children and obesity, and (vi) the growing prospects of enhancing the clinical utility by automated scoring of the buccal MN cytome assay biomarkers by image recognition software developed using artificial intelligence. The most important knowledge gap is the need of prospective studies to test whether the buccal MN cytome assay biomarkers predict health and disease.


Assuntos
Inteligência Artificial , Dano ao DNA , Criança , Humanos , Estudos Prospectivos , Exposição Ambiental , Biomarcadores
4.
Artigo em Inglês | MEDLINE | ID: mdl-38432773

RESUMO

Arsenic is potent human carcinogen which affects millions of people across the globe. Arsenic induced pre-cancerous and cancerous skin lesions are hall marks of chronic arsenic toxicity. Even then, only 15%-20% of the population manifest arsenic-induced skin lesions but the rest do not, the reason for which in not very clear. Not only that, conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress are the non-dermatological health effects which are often manifested in them in addition to the cancers of skin and other internal organs. In this work we have considered 233 arsenic exposed individuals with skin lesions and 205 arsenic exposed individuals without skin lesions from the highly arsenic affected Murshidabad district of West Bengal. We have compared arsenic exposure in the two groups through drinking water. Both the study groups have similar levels of arsenic exposure, drinking same arsenic laden water. Results show that higher amounts of arsenic were retained in the nails and hair of the skin lesion group compared to the no skin lesion group. Significant higher amounts of chromosomal aberration and micronucleus formation were found in the skin lesion group, than the no skin lesion group. Incidences of conjunctival irritations of the eyes, peripheral neuropathy and respiratory distress were much higher in the former group compared to the later. We, thus found that one group was more susceptible than the other, even with similar levels of arsenic exposure. We have tried to identify and discuss the probable reasons for this observation with reference to our previous works in the exposed population from West Bengal, India.


Assuntos
Arsênio , Doenças do Sistema Nervoso Periférico , Síndrome do Desconforto Respiratório , Humanos , Arsênio/toxicidade , Pele , Carcinógenos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38432775

RESUMO

Preclinical and clinical studies have shown that molecular hydrogen (H2) has anti-oxidant, anti-inflammatory, and anti-apoptotic properties. Safety data are available in the literature and acute toxicity has been tested in isolated cells and laboratory animals. We have evaluates the genotoxicity of H2 in vivo in rats after 72 h exposure, following the International Council for Harmonization guidelines ICH S2 (R1). The study was conducted on three groups of male Wistar rats: a negative control group, a positive control group receiving methyl methanesulfonate, and a H2-treated group receiving a 3.1% H2 gas mixture for 72 h. Alkaline comet, formamidopyrimidine DNA glycosylase (Fpg)-modified comet and bone marrow micronucleus assays were performed. H2 exposure increased neither comet-tail DNA intensity (DNA damage) nor frequency of "hedgehogs" in blood, liver, lungs, or bronchoalveolar lavage fluid. No increase in Fpg-sensitive sites in lungs, no induction of micronucleus formation, and no imbalance of immature erythrocyte to total erythrocyte ratio (IME%) was observed in rats exposed to H2. The ICH S2 (R1) test-battery revealed no in vivo genotoxicity in Wistar rats after 72 h inhalation of a mixture containing 3.1% H2.


Assuntos
Dano ao DNA , Hidrogênio , Masculino , Ratos , Animais , Ratos Wistar , Ensaio Cometa , Antioxidantes , DNA-Formamidopirimidina Glicosilase
6.
Mutagenesis ; 39(3): 205-217, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38502821

RESUMO

The current Organisation for Economic Co-Operation and Development test guideline number 487 (OECD TG No. 487) provides instruction on how to conduct the in vitro micronucleus assay. This assay is one of the gold standard approaches for measuring the mutagenicity of test items; however, it is directed at testing low molecular weight molecules and may not be appropriate for particulate materials (e.g. engineered nanoparticles [ENPs]). This study aimed to adapt the in vitro micronucleus assay for ENP testing and underpins the development of an OECD guidance document. A harmonized, nano-specific protocol was generated and evaluated by two independent laboratories. Cell lines utilized were human lymphoblastoid (TK6) cells, human liver hepatocytes (HepG2) cells, Chinese hamster lung fibroblast (V79) cells, whole blood, and buffy coat cells from healthy human volunteers. These cells were exposed to reference ENPs from the Joint Research Council (JRC): SiO2 (RLS-0102), Au5nm and Au30nm (RLS-03, RLS-010), CeO2 (NM212), and BaSO4 (NM220). Tungsten carbide-cobalt (WC/Co) was used as a trial particulate positive control. The chemical controls were positive in all cell cultures, but WC/Co was only positive in TK6 and buffy coat cells. In TK6 cells, mutagenicity was observed for SiO2- and both Au types. In HepG2 cells, Au5nm and SiO2 showed sub-two-fold increases in micronuclei. In V79 cells, whole blood, and buffy coat cells, no genotoxicity was detected with the test materials. The data confirmed that ENPs could be tested with the harmonized protocol, additionally, concordant data were observed across the two laboratories with V79 cells. WC/Co may be a suitable particulate positive control in the in vitro micronucleus assay when using TK6 and buffy coat cells. Detailed recommendations are therefore provided to adapt OECD TG No. 487 for testing ENP.


Assuntos
Testes para Micronúcleos , Testes para Micronúcleos/métodos , Testes para Micronúcleos/normas , Humanos , Animais , Nanoestruturas/toxicidade , Cricetinae , Cricetulus , Linhagem Celular , Organização para a Cooperação e Desenvolvimento Econômico , Células Hep G2
7.
Biochim Biophys Acta Mol Basis Dis ; 1870(4): 167116, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447882

RESUMO

The Aurora-A kinase (AurkA) and its major regulator TPX2 (Targeting Protein for Xklp2) are key mitotic players frequently co-overexpressed in human cancers, and the link between deregulation of the AurkA/TPX2 complex and tumourigenesis is actively investigated. Chromosomal instability, one of the hallmarks of cancer related to the development of intra-tumour heterogeneity, metastasis and chemo-resistance, has been frequently associated with TPX2-overexpressing tumours. In this study we aimed to investigate the actual contribution to chromosomal instability of deregulating the AurkA/TPX2 complex, by overexpressing it in nontransformed hTERT RPE-1 cells. Our results show that overexpression of both AurkA and TPX2 results in increased AurkA activation and severe mitotic defects, compared to AurkA overexpression alone. We also show that AurkA/TPX2 co-overexpression yields increased aneuploidy in daughter cells and the generation of micronucleated cells. Interestingly, the p53/p21 axis response is impaired in AurkA/TPX2 overexpressing cells subjected to different stimuli; consistently, cells acquire increased ability to proliferate after independent induction of mitotic errors, i.e. following nocodazole treatment. Based on our observation that increased levels of the AurkA/TPX2 complex affect chromosome segregation fidelity and interfere with the activation of a pivotal surveillance mechanism in response to altered cell division, we propose that co-overexpression of AurkA and TPX2 per se represents a condition promoting the generation of a genetically unstable context in nontransformed human cells.


Assuntos
Aurora Quinase A , Proteínas de Ciclo Celular , Humanos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteína Supressora de Tumor p53/genética , Segregação de Cromossomos/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Instabilidade Genômica , Instabilidade Cromossômica/genética , Cromossomos/metabolismo
8.
Toxics ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535934

RESUMO

The characterization of wildland firefighters' occupational exposure must consider different exposures, including those at the fire station. The present study aimed to characterize the occupational exposure of 172 Northern Portuguese wildland firefighters in fire stations during the pre-wildfire season of 2021. The biological impact of estimated inhaled doses of PM10 and PM2.5 (indoor/outdoor) was accessed through a buccal micronucleus cytome (BMCyt) assay in exfoliated buccal cells of a subgroup of 80 firefighters. No significant association was found between estimated inhaled doses of PM10 and PM2.5 (mean 1.73 ± 0.43 µg kg-1 and 0.53 ± 0.21 µg kg-1, respectively) and biological endpoints. However, increased frequencies of cell death parameters were found among subjects of the Permanent Intervention Teams (full-time firefighters). The intake of nutritional supplements was associated with a significant decrease in micronucleus frequencies (i.e., DNA damage or chromosome breakage). In addition, our findings showed a significantly increased frequency of cell death endpoints (i.e., nuclear fragmentation) with coffee consumption, while daily consumption of vegetables significantly decreased it (i.e., nuclear shrinkage). Our results provide data on the occupational exposure of wildland firefighters while working in fire stations during the pre-wildfire season, providing the essential baseline for further studies throughout the wildfire season.

9.
Environ Mol Mutagen ; 65(1-2): 67-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525651

RESUMO

Genotoxicity of styrene monomer was evaluated in male Fischer 344 rats using the alkaline comet assay for DNA damage, micronucleus assay for cytogenetic damage and the Pig-a assay for gene mutations. In a dose range finding (DRF) study, styrene was administered by oral gavage in corn oil for 28 consecutive days at 0, 100, 500, and 1000 mg/kg/day. The bioavailability of styrene was confirmed in the DRF by measuring its plasma levels at approximately 7- or 15-min following dosing. The 1000 mg/kg/day group exceeded the maximum tolerated dose based on body weight and organ weight changes and signs of central nervous system depression. Based on these findings, doses of 0, 100, 250, and 500 mg/kg/day (for 28 or 29 days) were selected for the genotoxicity assays. Animals were sacrificed 3-4 h after treatment on Day 28 or 29 for assessing various genotoxicity endpoints. Pig-a mutant frequencies and micronucleus frequencies were determined in peripheral blood erythrocytes. The comet assay was conducted in the glandular stomach, duodenum, liver, lung, and kidney. These studies were conducted in accordance with the relevant OECD test guidelines. Oral administration of styrene did not lead to genotoxicity in any of the investigated endpoints. The adequacy of the experimental conditions was assured by including animals treated by oral gavage with the positive control chemicals ethyl nitrosourea and ethyl methane sulfonate. Results from these studies supplement to the growing body of evidence suggesting the lack of in vivo genotoxic potential for styrene.


Assuntos
Dano ao DNA , Estireno , Ratos , Masculino , Animais , Ratos Endogâmicos F344 , Ratos Sprague-Dawley , Estireno/toxicidade , Eritrócitos , Ensaio Cometa/métodos , Testes para Micronúcleos/métodos , Testes de Mutagenicidade/métodos
10.
Mutat Res Rev Mutat Res ; 793: 108491, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38522822

RESUMO

Humans ingest particles and fibers on daily basis. Non-digestible carbohydrates are beneficial to health and food additives are considered safe. However, titanium dioxide (E171) has been banned in the European Union because the European Food Safety Authority no longer considers it non-genotoxic. Ingestion of microplastics and nanoplastics are novel exposures; their potential hazardous effects to humans have been under the radar for many years. In this review, we have assessed the association between oral exposure to man-made particles/fibers and genotoxicity in gastrointestinal tract cells and secondary tissues. We identified a total of 137 studies on oral exposure to particles and fibers. This was reduced to 49 papers with sufficient quality and relevance, including exposures to asbestos, diesel exhaust particles, titanium dioxide, silver nanoparticles, zinc oxide, synthetic amorphous silica and certain other nanomaterials. Nineteen studies show positive results, 25 studies show null results, and 5 papers show equivocal results on genotoxicity. Recent studies seem to show null effects, whereas there is a higher proportion of positive genotoxicity results in early studies. Genotoxic effects seem to cluster in studies on diesel exhaust particles and titanium dioxide, whereas studies on silver nanoparticles, zinc oxide and synthetic amorphous silica seem to show mainly null effects. The most widely used genotoxic tests are the alkaline comet assay and micronucleus assay. There are relatively few results on genotoxicity using reliable measurements of oxidatively damaged DNA, DNA double strand breaks (γH2AX assay) and mutations. In general, evidence suggest that oral exposure to particles and fibers is associated with genotoxicity in animals.

11.
Drug Chem Toxicol ; : 1-13, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38529831

RESUMO

Doxorubicin (Dox), an effective anticancer agent, is known for its genotoxic effects on normal cells. Phenolic compounds, renowned for their antitumor, antioxidant, and antigenotoxic properties, have gained prominence in recent years. This study investigates the individual and combined protective effects of rosmarinic acid (RA) and epigallocatechin gallate (EGCG) against Dox-induced genotoxicity using various in vitro test systems. The synergistic/antagonistic interaction of these combinations on Dox's chemotherapeutic effect is explored in breast cancer cell lines. Both RA and EGCG significantly mitigate Dox-induced genotoxicity in comet, micronucleus, and Ames assays. While Dox exhibits higher selectivity against MCF-7 cells, EGCG and RA show greater selectivity against MDA-MB-231 cells. The coefficient of drug interaction reveals a synergistic effect when RA or EGCG is combined with Dox in breast cancer cells. In conclusion, both EGCG and RA effectively reduce Dox-induced genetic damage and enhance Dox's cell viability-reducing effect in breast cancer cells.


Rosmarinic acid (RA) showed protective effect against doxorubicin-induced genotoxicity.Epigallocatechin gallate (EGCG) demonstrated pro-oxidant properties at high concentrations.EGCG and RA selectively targeted MDA-MB-231 cells.Synergistic effect was observed when EGCG or RA was administered together with Dox on breast cancer cells.

12.
Environ Res ; 251(Pt 1): 118634, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38452915

RESUMO

Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and those addressing this issue in mobile phone users are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2 h on 5 consecutive days. Before and three weeks after the exposure, buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.

13.
In Vivo ; 38(2): 674-682, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38418144

RESUMO

BACKGROUND/AIM: Undernutrition is a serious health problem prevalent in poor countries, affecting millions of people worldwide, especially young children, pregnant women, and sick elderly individuals. This condition increases vulnerability to infections, leading to widespread use of antibiotic treatments in undernourished populations. The objective of the present study was to determine the in vivo genotoxic and cytotoxic effects of trimethoprim-sulfamethoxazole (TMP-SMX) treatment according to nutritional conditions. MATERIALS AND METHODS: The effects of TMP-SMX treatment were measured by analyzing the kinetics of micronucleated reticulocytes (MN-RET) induced in the peripheral blood of young, well-nourished (WN) and undernourished (UN) rats. RESULTS: In the WN group, two distinct peaks of MN-RET were observed, while the UN group had a significantly higher basal frequency of MN-RET compared to the WN group and only a later peak. Reticulocyte (RET) frequency slightly decreased in WN, indicating a poor cytotoxic effect. In contrast, in the UN, the treatment caused a significant increase in RET frequency. The results indicate that SMX's aromaticity index decreases when formed with TMP, suggesting potentially fewer toxic effects. CONCLUSION: In vivo TMP-SMX produces two MN-RET induction peaks in WN animals, indicating two DNA damage induction mechanisms and consequent micronucleus production. The UN rats did not display the two peaks, indicating that the first MN induction mechanism did not occur in UN, possibly due to pharmacokinetic effects, decreased metabolism or effects on cell proliferation. TMP-SMX has a slight cytotoxic effect on WN. In contrast, in the UN, the antibiotic treatment seems to favor early erythropoiesis.


Assuntos
Desnutrição , Combinação Trimetoprima e Sulfametoxazol , Humanos , Criança , Ratos , Animais , Feminino , Gravidez , Pré-Escolar , Idoso , Combinação Trimetoprima e Sulfametoxazol/toxicidade , Reticulócitos , Dano ao DNA
14.
Mutagenesis ; 39(2): 69-77, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38301659

RESUMO

Chemical safety testing plays a crucial role in product and pharmacological development, as well as chemoprevention; however, in vitro genotoxicity safety tests do not always accurately predict the chemicals that will be in vivo carcinogens. If chemicals test positive in vitro for genotoxicity but negative in vivo, this can contribute to unnecessary testing in animals used to confirm erroneous in vitro positive results. Current in vitro tests typically evaluate only genotoxicity endpoints, which limits their potential to detect non-genotoxic carcinogens. The frequency of misleading in vitro positive results can be high, leading to a requirement for more informative in vitro tests. It is now recognized that multiple-endpoint genotoxicity testing may aid more accurate detection of carcinogens and non-carcinogens. The objective of this review was to evaluate the utility of our novel, multiple-endpoint in vitro test, which uses multiple cancer-relevant endpoints to predict carcinogenic potential. The tool assessed micronucleus frequency, p53 expression, p21 expression, mitochondrial respiration, cell cycle abnormalities and, uniquely, cell morphology changes in human lymphoblastoid cell lines, TK6 and MCL-5. The endpoints were used to observe cellular responses to 18 chemicals within the following categories: genotoxic carcinogens, non-genotoxic carcinogens, toxic non-carcinogens, and misleading in vitro positive and negative agents. The number of endpoints significantly altered for each chemical was considered, alongside the holistic Integrated Signature of Carcinogenicity score, derived from the sum of fold changes for all endpoints. Following the calculation of an overall score from these measures, carcinogens exhibited greater potency than non-carcinogens. Genotoxic carcinogens were generally more potent than non-genotoxic carcinogens. This novel approach therefore demonstrated potential for correctly predicting whether chemicals with unknown mechanism may be considered carcinogens. Overall, while further validation is recommended, the test demonstrates potential for the identification of carcinogenic compounds. Adoption of the approach could enable reduced animal use in carcinogenicity testing.


Assuntos
Carcinogênese , Carcinógenos , Animais , Humanos , Carcinógenos/toxicidade , Testes de Carcinogenicidade/métodos , Testes de Mutagenicidade/métodos , Dano ao DNA , Técnicas In Vitro
15.
Genes Environ ; 46(1): 3, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38303098

RESUMO

BACKGROUND: A micronucleus test is generally used to evaluate the genotoxic potential of chemicals. Exaggerated erythropoiesis, as occurs following bleeding, may induce an unexpected increase in micronucleus frequency. This false positive result would be typical in a genotoxicity study due to the enhanced progression of the cell cycle that restores decreased blood cells. The cyclin-dependent kinase (CDK) family is known to play an essential role in preventing genomic instability. Conversely, a selective CDK4/6 inhibitor PD0332991, clinically named Palbociclib, is reported to have genotoxic potential, shown by positive results in both in vitro and in vivo micronucleus studies. To clarify the mechanism by which cell cycle arrest induced by a CDK4/6 inhibitor increases micronucleus frequency, we investigated the positive results of the bone marrow micronucleus test conducted with PD0332991. RESULTS: Rats treated with PD0332991 exhibited increased micronucleus frequency in an in vivo bone marrow micronucleus test whereas it was not increased by treatment in human lymphoblastoid TK6 cells. In addition, all other genotoxicity tests including the Ames test and the comet assay showed negative results with PD0332991. Interestingly, PD0332991 treatment led to an increase in erythrocyte size in rats and affected the size distribution of erythrocytes, including the micronucleus. The mean corpuscular volume of reticulocytes (MCVr) in the PD0332991 treatment group was significantly increased compared to that of the vehicle control (83.8 fL in the PD0332991, and 71.6 fL in the vehicle control.). Further, the average micronucleated erythrocytes (MNE) size of the PD0332991 group and vehicle control was 8.2 and 7.3 µm, respectively. In the histogram, the vehicle control showed a monomodal distribution with a peak near 7.3 µm. In contrast, the PD0332991 group showed a bimodal distribution with peaks around 7.5 and 8.5 µm. Micronucleated erythrocytes in the PD0332991 group were significantly larger than those in the vehicle control. These results suggest that the increase in micronucleus frequency induced by the CDK4/6 inhibitor is not due to genotoxicity, but is attributable to disturbance of the cell cycle, differentiation, and enucleation of erythroblasts. CONCLUSIONS: It was suggested that the positive outcome of the in vivo bone marrow micronucleus test resulting from treatment with PD0332991 could not be attributed to its genotoxicity. Further studies to clarify the mechanism of action can contribute to the development of drug candidate compounds lacking intrinsic genotoxic effects.

16.
Int J Mol Sci ; 25(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338706

RESUMO

Telomere shortening, chromosomal damage, and mitochondrial dysfunction are major initiators of cell aging and biomarkers of many diseases. However, the underlying correlations between nuclear and mitochondrial DNA alterations remain unclear. We investigated the relationship between telomere length (TL) and micronucleus (MN) and their association with mitochondrial DNA copy number (mtDNAcn) in peripheral blood mononuclear cells (PBMCs) in response to 100 µM and 200 µM of hydrogen peroxide (H2O2) at 44, 72, and 96 h. Significant TL shortening was observed after both doses of H2O2 and at all times (all p < 0.05). A concomitant increase in MN was found at 72 h (p < 0.01) and persisted at 96 h (p < 0.01). An increase in mtDNAcn (p = 0.04) at 200 µM of H2O2 was also found. In PBMCs treated with 200 µM H2O2, a significant inverse correlation was found between TL and MN (r = -0.76, p = 0.03), and mtDNA content was directly correlated with TL (r = 0.6, p = 0.04) and inversely related to MN (r = -0.78, p = 0.02). Telomere shortening is the main triggering mechanism of chromosomal damage in stimulated T lymphocytes under oxidative stress. The significant correlations between nuclear DNA damage and mtDNAcn support the notion of a telomere-mitochondria axis that might influence age-associated pathologies and be a target for the development of relevant anti-aging drugs.


Assuntos
DNA Mitocondrial , Leucócitos Mononucleares , DNA Mitocondrial/metabolismo , Leucócitos Mononucleares/metabolismo , Peróxido de Hidrogênio/toxicidade , Variações do Número de Cópias de DNA , Mitocôndrias/genética , Mitocôndrias/metabolismo , Encurtamento do Telômero , Telômero/genética , Telômero/metabolismo , Estresse Oxidativo
17.
Regul Toxicol Pharmacol ; 148: 105586, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382587

RESUMO

The increasing use of titanium dioxide (TiO2) nanoparticles (NPs) has raised concern about the safety of food additive TiO2. TiO2 has been considered no longer safe by EFSA due to concerns over genotoxicity, however, there are conflicting opinions upon the safety of TiO2 as a food additive, and the number of in vivo genotoxicity studies conducted on food additive TiO2 was limited. In order to investigate the potential genotoxicity of food additive TiO2, we evaluated the genotoxicity of a commercial food additive TiO2 (average size of 135.54 ± 41.01 nm, range from 60.83 to 230.16 nm, NPs account for 30% by number) using a battery of standard in vivo tests, including mammalian erythrocyte micronucleus test, mammalian bone marrow chromosomal aberration test and in vivo mammalian alkaline comet test. After 15 days of consecutive intragastric administration at doses of 250, 500, and 1000 mg/kgBW, food additive TiO2 neither increased the frequencies of bone marrow micronuclei or chromosomal aberration in mice, nor induced DNA strand breakage in rat liver cells. These results indicate that under the condition of this study, food additive TiO2 does not have genotoxic potential although it contains a fraction of NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Ratos , Camundongos , Animais , Aditivos Alimentares/toxicidade , Dano ao DNA , Testes para Micronúcleos , Titânio/toxicidade , Aberrações Cromossômicas/induzido quimicamente , Ensaio Cometa , Mamíferos
18.
Environ Mol Mutagen ; 65(1-2): 96-102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38333941

RESUMO

This cross-sectional study evaluated, for the first time, DNA damage, viability, and cell death of lymphocytes and cell cycle phases of mononuclear and polymorphonuclear cells in veterinarians exposed to the volatile anesthetic isoflurane. Veterinarians who were occupationally exposed to isoflurane (exposed group; n = 20) and matched-unexposed individuals (volunteers without occupational exposure; n = 20) were enrolled in the study. DNA damage was assessed in lymphocytes by micronucleus (MN) and phosphorylated histone gamma-H2AX (γ-H2AX). Cell viability, cytotoxicity, and the cell cycle were evaluated by flow cytometry. Isoflurane was detected in urine samples by headspace gas chromatography-mass spectrometry. Compared with unexposed subjects, veterinarians occupationally exposed to isoflurane (25.7 ± 23.7 µg/L urine) presented statistically higher MN frequencies, lymphocytic apoptosis rates, and numbers of polymorphonuclear cells in the G0/G1 stage. Additionally, the exposed group presented statistically lower proportions of viable lymphocytes and G2/M polymorphonuclear cells. Our findings indicate that veterinarians who are frequently exposed to inhaled anesthetic exhibit chromosomal and cell damage in addition to changes in peripheral blood cell proliferation.


Assuntos
Anestésicos , Isoflurano , Exposição Ocupacional , Médicos Veterinários , Humanos , Testes para Micronúcleos/métodos , Estudos Transversais , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , Cromossomos , Ciclo Celular , Apoptose , Dano ao DNA , Linfócitos
19.
Environ Mol Mutagen ; 65(1-2): 84-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38353119

RESUMO

Drug abuse is considered a global health problem with serious social impact. In recent decades, changes in drug consumption patterns have shown a clear rising trend in the use of multiple drugs. Although the buccal micronucleus cytome (BMCyt) assay has evaluated cytotoxicity in drug abuse, there has not been an approach that takes into account this pattern of multiple drug use. Therefore, in this study, we evaluate for the first time the cytogenotoxic effects in multidrug users, and its correlation with the amount consumed and years of abuse. This study was conducted on 166 individuals by the BMCyt assay. A total of 83 individuals with a history of multiple licit (alcohol and tobacco) and at least one illicit drug abuse (marijuana, methamphetamines, cocaine, and/or inhalants), and 83 healthy individuals, non-drug abusers were analyzed. The results showed that drug abusers had higher frequencies of nuclear abnormalities nuclear buds, binucleated cells, pyknotic nuclei (PNs), karyorrhexis (KX), and abnormally condensed chromatin when compared with healthy controls. Moreover, results suggests that the use of licit and illicit drugs is related to cytogenotoxic damage, as was shown by an upward trend in the frequency of nuclear abnormalities identified in groups 1 (alcohol + tobacco + at least one illicit drug) and 2 (tobacco + at least one illicit drug). Furthermore, a positive correlation was found in the different groups, between the years and the amount of consumption of some drugs (alcohol, methamphetamine, and tobacco) with cytotoxicity markers such as KL, KX, and PNs.


Assuntos
Drogas Ilícitas , Transtornos Relacionados ao Uso de Substâncias , Humanos , Testes para Micronúcleos/métodos , Núcleo Celular , Morte Celular , Tabaco , Drogas Ilícitas/toxicidade , Mucosa Bucal
20.
Biol Res Nurs ; : 10998004241230638, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302162

RESUMO

Background: Preterm birth (PTB) poses a significant global health challenge and focused research is vital for improving maternal and neonatal health outcomes. The purpose of this study was to determine the effect of oxidative stress (OS) and DNA damage on PTB. Methods: There were two groups: (a) cases consisting of mothers with PTB (<37 weeks of gestation, n = 100) and (b) controls consisting of mothers with term birth (>37 weeks of gestation, n = 100). Women with vaginal infection, non-cephalic presentation, multiple gestations, fetal anomalies, Cesarean delivery, pregnancy with Mullerian anomalies, or preeclampsia were excluded from the study. OS analysis was conducted by measuring levels of superoxide dismutase (SOD), catalase (CAT), lipid peroxidation (LPO), and total protein and DNA damage were evaluated by CBMN-Cyt assay. Statistical analysis was performed using students' t-test and one-way ANOVA. Results: Low levels of antioxidants SOD and CAT (p < .0001), and total protein (p < .0001), besides high malondialdehyde (byproduct of LPO) (p < .0001) were observed in the PTB group. Moreover, high frequencies of micronuclei (p < .0001) and nucleoplasmic buds (p < .01) were detected in the PTB mothers compared to term birth mothers, while no significance was observed in the nucleoplasmic bridge frequencies. Conclusion: When the body's immune system and antioxidants fail to cope up with the generated OS, it can lead to PTB. Along with other body tests, OS markers and CBMN-Cyt tests have the potential to be used in diagnostics for early warning as well as monitoring and advising mothers for a better pregnancy outcome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...